

Insect Ecology

Silvia I. Rondon Hermiston Agricultural Research & Extension Center Crop & Soil Science

*Disclaimer: Pictures were taken from the www web for teaching purposes only

Outline

- Insects adaptations
 - Metamorphosis
- Temperature, water and humidity
 - Diapause

Summary

- Segmented body divided into three sections: head, thorax, abdomen.
- Mouth including mandibles.
- Three pairs of legs attached to the thorax.
- One pair of antennae.
- External skeleton (exoskeleton)
- Usually, one or two pairs of wings attached to the thorax

Metamorphosis (insect development)

Complete

Simple metamorphosis

- There are a few primitive insects who do not undergo any metamorphosis
- Apterygota: springtails, proturans, diplurans, and bristletails
- Most common: silverfish, firebrats, springtails mostly
- The proturans and diplurans mostly show up in soil

Gradual metamorphosis

- These insects hatch from an egg and look much like miniature adults: Nymphs
- Lack wings and sexual organs until the final molt. Eat the same food as adults
- Examples are grasshoppers, thrips, termites, lice, true bugs and aphids
- Aphids usually skip the egg stage producing live young

Incomplete metamorphosis

- This term refers to insects who spend part of their life cycle in water: Naiads
- Naiads eat a different food than the adults
- Mayflies, stoneflies and dragonflies are good examples
- The final change to an adult occurs not in a pupa, but inside the last naiad stage

Complete metamorphosis

- One of Nature's best tricks
- This growth form is representative of the majority of insects by numbers
- Ones we see most are the beetles, wasps, butterflies and moths, flies, and fleas
- The process involves 4 totally different life stages: egg, larva, pupa and adult

Butterflies/Moths

Beetles

Environment effects on development

- Temperature
 - Humidity
 - Diapause

Temperature

- Poikilothermic (body varies directly with environmental changes)
- Optimal temperatures
- Sub-optimal temperatures

Potato tuberworm

Effects of temperature-Potato Tuberworm

DEVELOPMENTAL EXPERIMENTS AT HAREC -- RESULTS

Temperature	Mean Egg Duration	Mean Larval Duration	Mean Pupal Duration
50 F	41.3 days	90.9 days*	74.3 days*
61 F	15.0 days	33.7 days	27 days*
72 F	7.2 days	15.5 days	12.5 days
82 F	4.2 days	9.0 days	7.9 days
93 F	3.2 days	6.9 days	5.9 days

- When temperatures are higher, organisms develop faster.
- Insects require a certain amount of "heat" to develop from one point in their life cycles to another: physiological time.
- The amount of "heat" required to complete a given organism's development is often expressed in units called degree-days (°D).

- Upper and lower developmental thresholds have been determined for some organisms.
- •Thresholds vary with different organisms.

http://uspest.org/wea/

Drosophila suzukii, the Spotted Wing Drosophila (SWD)

....an invasive pest attacking fruit

http://swd.hort.oregonstate.edu

Model matches SWD's response to climate that is <u>suitable</u> for SWD to complete its cycle.

Oregon: Good to Better

Climate parameters:

- Moisture
- Temperature
- Light
- Heat Stress
- Dry Stress
- Wet Stress
- Hot-wet Stress

Areas Suitable for SWD

Humidity

- Low moisture can affect the development, longevity and ovipositon of insects
- Relative humidity (RH)

Diapause

•Temperature and humidity can directly of indirectly interrupt insect development

Effect of presence of a pupal case and duration that PTW pupae remained in the soil on survival (mean ± SE) during winter of 2007, in Hermiston, OR

Duration of Exposure to Winter Conditions (in days)

