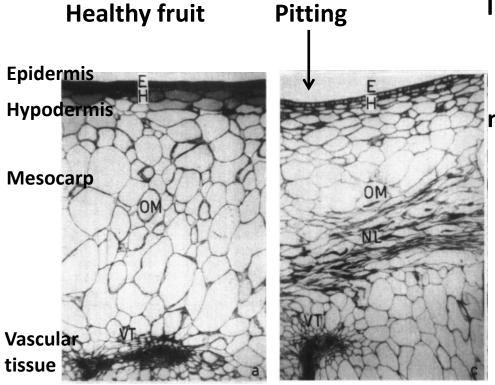


Sweet cherry pitting

- #1 postharvest disorder
- Pitting not only <u>detract from the appearance</u> but also <u>hasten fruit deterioration</u>

Rational of the study

- However, limited research on pitting of the new late-season cultivars.
 - 'Sweetheart', 'Lapins', 'Skeena'
 - Pitting data in literature were generated on Lambert, Van, and Bing, with extremely contradictory results.
- Both growers and packers need the information on
 - 1. What cause pitting,
 - 2. Factors influence pitting susceptibility, on the current major cultivars.



Scenario of pitting formation

Wade and Bain, 1980. cv. Ron's Seedling

Impact/compact damage on skin

Skin depression occurred underlied the necrotic lesion

What cause pitting of sweet cherries

- Heat/moisture stresses cause pitting on trees (>90°F for 3d)
 - 'Skeena'
 - 'Regina'

Mechanical stress & Pitting

Picking

- Pitting generated by
- Squeezing by hands
- > Fruit-to-bucket
- > Fruit-to-fruit
- > Fruit-to-stem

Mechanical stress & Pitting

- Picking
- Packing line
 - Cluster-cutting
 - Box-filling
 - Fruit-to-fruit
 - Fruit-to-stem
- Transportation:
 - compact damage

Pitting resistance/susceptibility

 However, It is often not possible to avoid all these mechanical stresses during picking, packing, and transportation.
 Therefore, <u>increasing fruit pitting resistance</u> is important.

Pre-harvest factors

- Pre-harvest GA₃ and Ca²⁺ sprays
- Harvest maturity
- Crop load

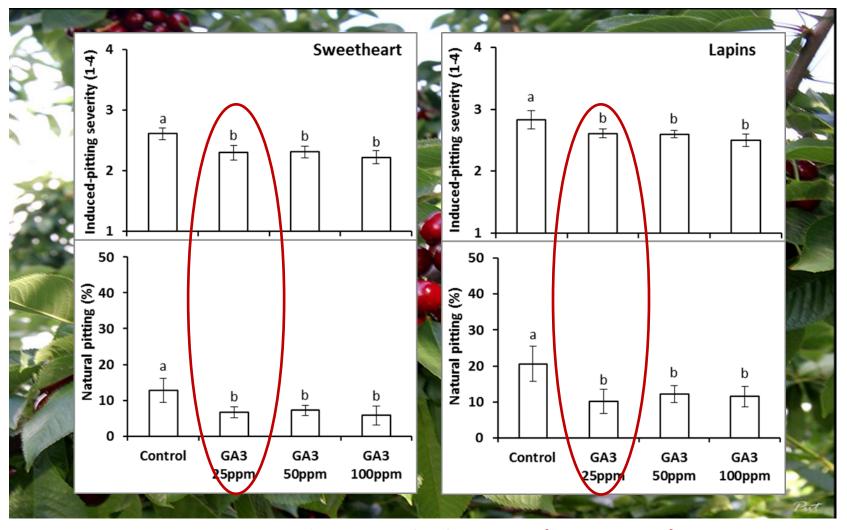
Postharvest factors

- Postharvest Ca²⁺ treatment
- Edible coating
- Fruit pulp temperature

1. Pre-harvest GA₃, Ca²⁺ applications to increase pitting resistance of sweet cherries

Yan Wang and Todd Einhorn

1.1. GA₃ increased fruit firmness


- 'Sweetheart', 'Lapins'
 - Two pitting susceptible cultivars
- Application rate,
- Application frequency,
- Production year,
- Application timing.

	2010	2012	2012
GA Rates	Sweetheart	Sweetheart	Lapins
0	380 a	298 b	261 b
0+ surfact.		305 b	250 b
20	417 a		
25		331 a	297 a
30	416 a		
30 (20+10)	418 a		
40	419 a		
40 (20+20)	414 a		
50		345 a	281 a
60	417 a		
60 (20+40)	417 a		
100		352 a	262 b

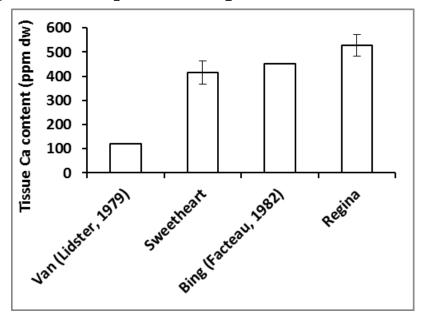
GA₃ increased FF on both cultivars in different years Response saturated at a single, low rate (20-25 ppm) There is a wide application window: ±10d from straw color stage

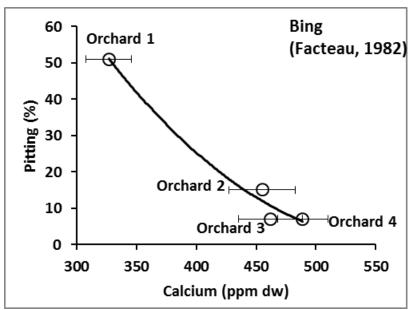
As a result of the increased FF, GA₃ reduced pitting

- Response saturated at a single, low rate (20-25 ppm)
- Application window: ±10d from straw color stage

1.2. Pre-harvest calcium (Ca) sprays

- Ca plays an extremely important role in the fruit for
 - Cell wall structure and strength
 - Cell plasma membrane structure and integrity
- However, fruit are often deficient in Ca due to its low mobility in plants:
 - Acid soil
 - Ca in soil at low pH (i.e., <6) is not available for root uptake.
 - High growing temperature
 - Inhibit Ca uptake and transportation.
 - Water stress, high humidity
 - Plant uptakes and transports Ca by water flow in xylem.
 - Low crop load
 - Ca tends to move into actively growing leaves and shoots in stead of fruit in the condition of low crop load.
 - High N and K levels......
 - Competition

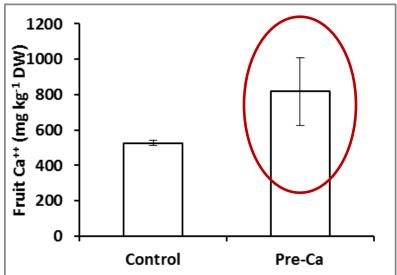

Tissue Ca content & pitting susceptibility

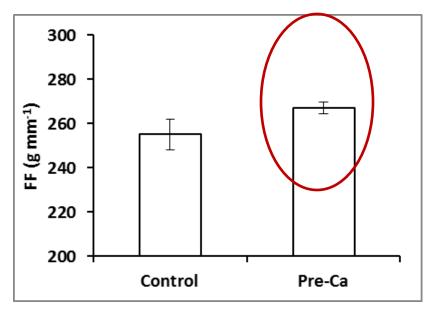

Different cultivars

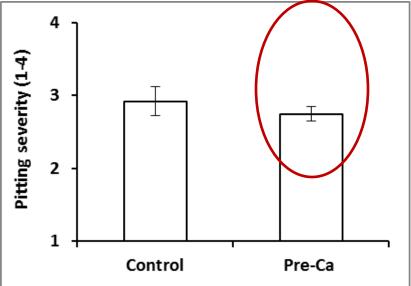
- Pitting susceptible cultivars, like 'Van', have low Ca content,
- Pitting resistant cultivars, like
 'Regina', have higher Ca content.

'Bing' from different orchards

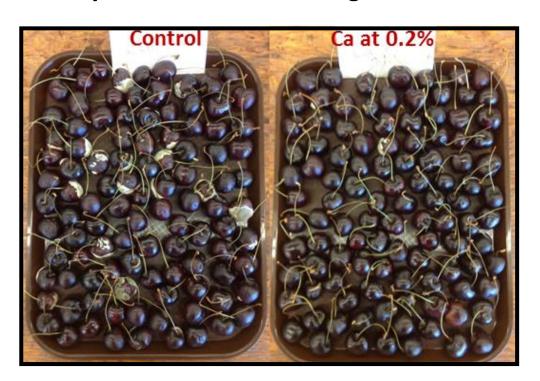
- Higher Ca content, less pitting,
- Lower Ca content, more pitting.


Different orchards: 'Skeena'




- > A preliminary trial: CaCl₂ at 0.2% multiple sprays (6) on 'Lapins'
 - Increased tissue Ca content

- > A preliminary trial: CaCl₂ at 0.2% multiple sprays (6) on 'Lapins'
 - Increased tissue Ca content
 - Increased FF
 - Reduced pitting susceptibility



- > A preliminary trial: CaCl₂ at 0.2% multiple sprays (6) on 'Lapins'
 - Increased tissue Ca content
 - Increased FF and pitting resistance
 - Limited pedicel browning after 3 weeks of storage/shipping

- > A preliminary trial: CaCl₂ at 0.2% multiple sprays (6) on 'Lapins'
 - Increased tissue Ca content
 - Increased FF and pitting resistance
 - Limited pedicel browning
 - Reduced decay after 4 weeks of storage + 2d at room temperature.

Pre-harvest Ca²⁺ sprays improve heat resistance

- ➤ A preliminary trial: CaCl₂ sprays on 'Skeena' before heat stress.
 - Reduced pitting caused by heat stress.

CaCl₂ at 0.2%

Need more research on pre-harvest Ca²⁺ sprays

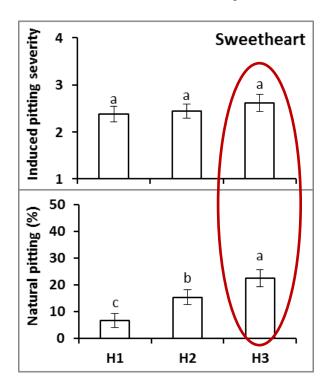
- To optimize:
 - **1.** Ca sources: CaCl₂, Ca(NO₃)₂, Ca citrate, Ca acetate, Chelated Ca
 - 2. Application rate
 - 3. Application timing
 - 4. Application frequency

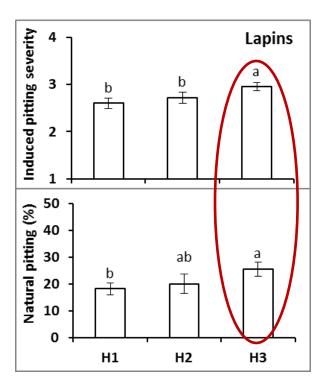
2. Harvest maturity affects pitting susceptibility of sweet cherries

Yan Wang and Todd Einhorn

Harvest maturity affects fruit quality

- As harvest timing delayed: 'Sweetheart' ctifl 3-6; 'Lapins' ctifl 4-7
 - Fruit size increased,
 - SSC accumulated.


SSC	2012	2012	2013	2013
	Lapins	Sweetheart	Lapins	Sweetheart
H1	18.1b	20.2b	14.8c	19.4b
H2	19.5ab	19.3b	16.6b	19.7b
Н3	20.3 a	21.6 a	20.6 a	21.8 a

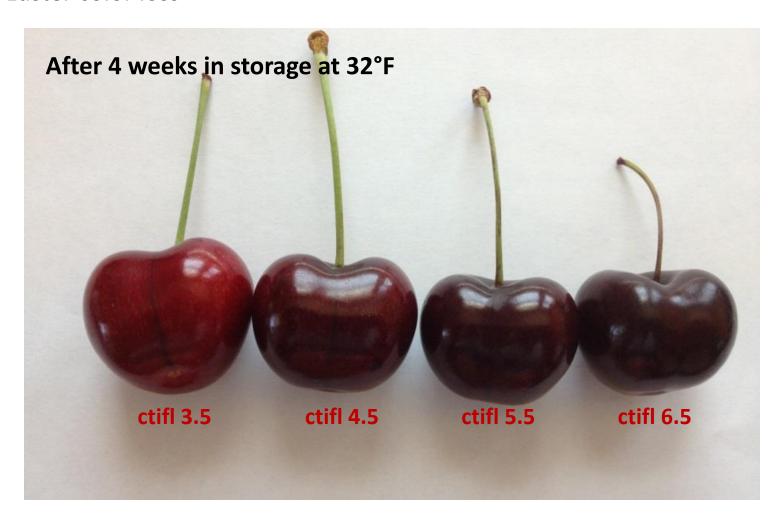

- However, fruit softened.
 - 'Sweetheart' 5.0-6.0
 - 'Lapins' 6.0-7.0

FF	2012	2012	2013	2013
	Lapins	Sweetheart	Lapins	Sweetheart
H1	325a	391a	316a	492a
H2	325a	359b	289a	510a
Н3	289b	350b	257b	456b

Harvest maturity affects pitting susceptibility

- As harvest timing delayed, 'Sweetheart' ctifl 3-6; 'Lapins' ctifl 4-7
- However, fruit softened.
- Pitting susceptibility increased.
 - 'Sweetheart' at 5.0-6.0; 'Lapins' at 6.0-7.0

More mature, more susceptible to pitting

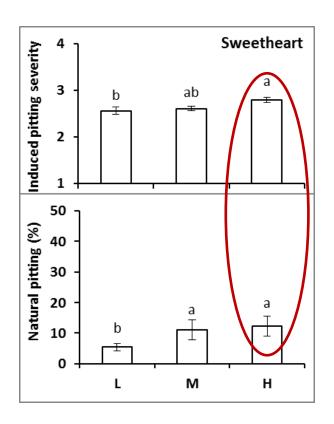

Collected on line

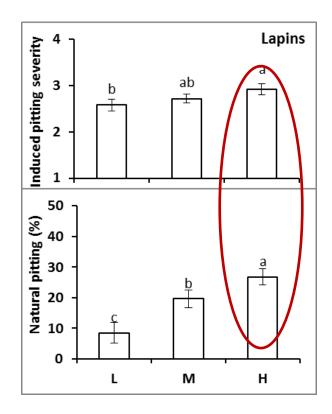
Late harvest

- Pedicel browning: senescence
- Luster color loss

Conclusion (harvest maturity)

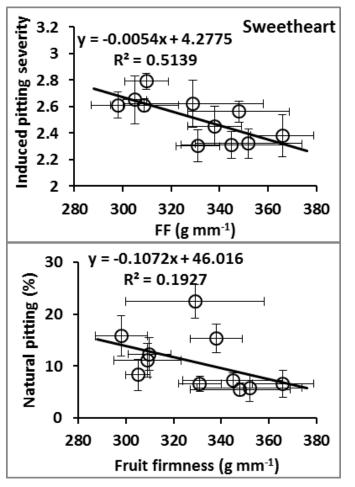
- > To balance eating quality and shipping quality:
 - 'Sweetheart' at ctifl 4.5
 - 'Lapins' at ctifl 5.5
- Enough size and sugar,
- Less pitting, better luster, limited pedicel browning after storage/shipping.

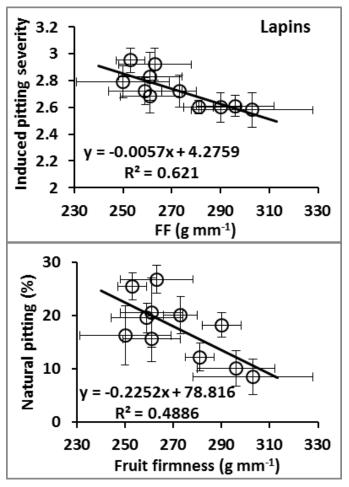

3. Crop load (Yan Wang and Todd Einhorn)


- Three Crop loads:
 - Low = 2-3 fruit/spur; Moderate = 5-7 fruit/spur; Heavy = >10 fruit/spur.
- Heavy crop load reduced fruit size, SSC, and fruit firmness (FF).

		A	t harvest				2 v	veeks at 32	2 °F	
	FD	RR	FF	SSC	TA	FF	SSC	TA	IP	PI
	(mm)	(mL kg ⁻¹ h ⁻¹)	(g mm ⁻¹)	(%)	(%)	(g mm ⁻¹)	(%)	(%)	(1-4)	(%)
		1			Lapins	2012				
L	30.9a	21.4b	304a	18.7a	0.84a	316a	17.9a	0.60a	2.58b	8.5b
M	29.1b	24.7ab	279b	15.9b	0.82a	295b	15.3b	0.61a	2.72ab	19.6ab
Н	27.3c	25.9a	263b	14.3c	0.85a	287b	14.5b	0.55b	2.92a	26.8a
	l				Lapins	2013				
L	31.4a	22.6b	258a	20.1	0.63	295	20.1	0.55	2.82b	
M	29.3b	23.1b	263a	16.8	0.54	254	16.6	0.47	2.80b	
Н	27.2c	28.6a	218b	14.4	0.56	257	16.1	0.46	3.01a	
	l				Sweethe	art 2012				
L	28.9a	16.7b	366a	20.6a	0.87a	388a	21.2a	0.77a	2.56b	5.5b
M	27.0b	16.8b	338b	19.5a	0.89a	365b	19.3b	0.76a	2.61ab	11.1a
Н	26.2c	23.5a	329b	17.3b	0.84a	356b	16.9c	0.70b	2.79a	12.3a
	l				Sweethe	art 2013				
L	28.4a	17.6a	409a	22.5a	0.91a	511a	22.1a	0.85a	2.22a	
M	28.2a	18.8a	415a	22.7a	0.85b	520a	21 .3a	0.8b	2.28a	
<u>H</u>	27.5a	19.3a	394a	20.5b	0.73c	488b	19.7b	0.71c	2.29a	

Crop load affects pitting susceptibility


Heavy crop load, more susceptible to pitting.



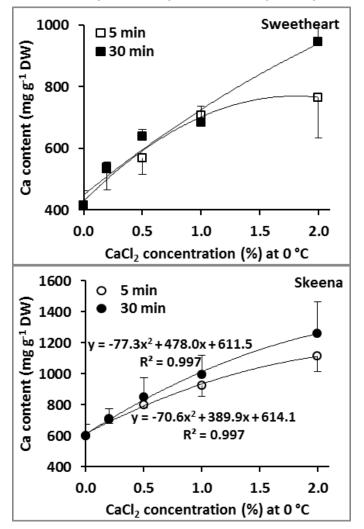
FF is a pitting resistance predictor

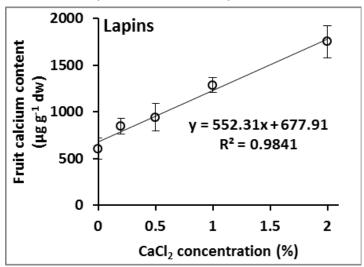
- A wide rang of fruit quality and pitting susceptibility was generated by GA₃, harvest maturity, and crop load treatments:
 - FF had a significant negative correlation with pitting susceptibility.
 - SSC, size, RR, and TA were poorly related to Pitting.

4. Postharvest Ca treatment

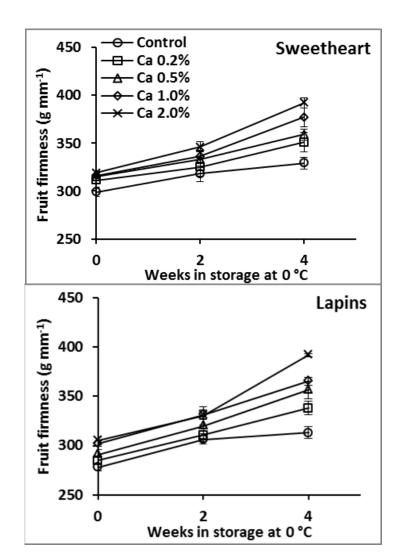
- Calcium salts are widely used in food industry.
- Calcium carbonate
- Calcium citrate
 - Enhance nutritional value
- Calcium lactate
- Calcium chloride
- Calcium phosphate
- Calcium propionate
- Calcium gluconate
 - Preservation
 - Enhancement of product firmness

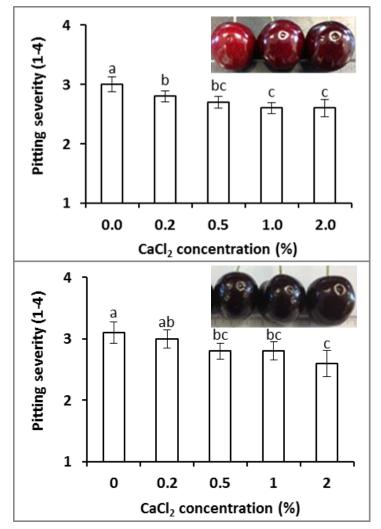
Postharvest Ca treatment


- Calcium treatments represent a safe and effective method for increasing the quality and storage life of a wide range of fruit.
 - apple, peach, tomato, cantaloupe, grapefruit, pomegranate, strawberry, papaya...
 - OptiCAL[®]
- However, no reports on sweet cherry.
- Two year study:
 - The effect of adding OptiCAL[®] in hydrocooling water on pitting of sweet cherry



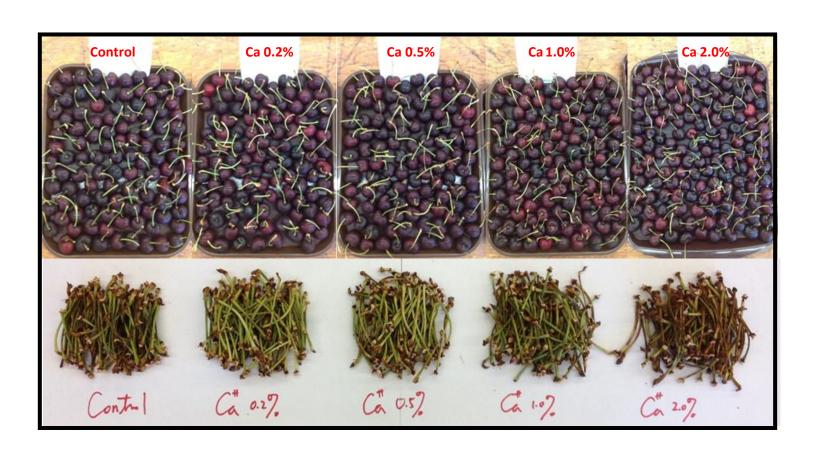
Postharvest Ca treatment and tissue Ca content


- ➤ Opti-CAL® in hydro-cooling water at 0.2-2.0% for 5 or 30 min.
 - Increase tissue [Ca]
 - Cherry fruit uptake Ca²⁺ pretty fast at low temperature, compared to other fruit.



Postharvest Ca treatment and pitting

- > Opti-CAL® in hydro-cooling water at 0.2-2.0% for 5 min.
 - Increase FF, reduce pitting susceptibility


Postharvest Ca treatment and pedicel quality

➤ Opti-CAL[®] in hydro-cooling water for 5 min maintained 'Lapins' pedicel quality at 0.2-0.5% but damaged pedicel at 1.0-2.0%.

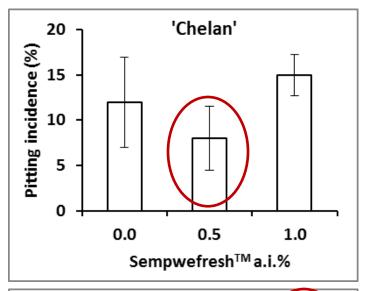
Postharvest Ca treatment and pedicel quality

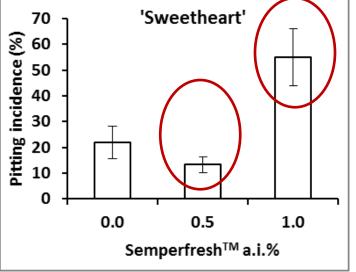
➤ Opti-CAL[®] in cold water for 15-30 min maintained 'Skeena' pedicel quality at 0.2-0.5% but damaged pedicel at 1.0-2.0%.

5. Edible coatings

Research reported that the following coatings improve shipping quality of sweet cherries.

- Semperfresh[™]
 - Registered for sweet cherry postharvest use.
- Alginate
 - Brown Algae
- Chitosan
 - Shrimp shells and other sea crustaceans.
- Aloe Vera




Edible coatings

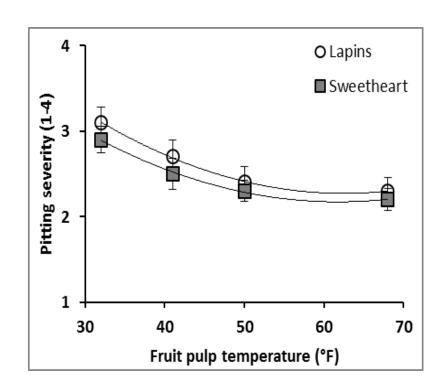
- Literature indicated that edible coatings improve shipping quality by
- 1. Reduce respiration rate
- 2. Reduce moisture loss
 - Pedicel quality
- 3. Reduce decay and food safety microbial.
- We found that edible coating application rates affect pitting expression of PNW sweet cherry.

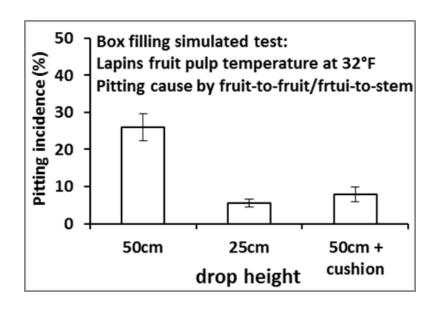
Semperfresh[™] and pitting

- Semperfresh[™] at 0.5% reduced pitting
 - 'Chelan'
 - 'Sweetheart'
 - Reduced moisture loss
- Higher rate at 1.0% increased pitting of 'Sweetheart'.
 - Localized O₂ deficiency

SemperfreshTM and pitting

Crop	%Active	Diluteto
Bartlett pear Comice pear	0.5%	26.5 gal (100 litres)
Packhams pear	0.7%	19 gal (72 litres)
Cantalope melon Galia melon Papaya	0.8%	16.5 gal (62 litres)
Avocado Granny Smith appl Golden Delicious	1.0% e	13 gal (50 litres)
Cherry	1.0%	13 gal (50 litres)
Plum	1.1%	12 gal (45 litres)
Banana Pineapple	1.2%	11 gal (42 litres)
Lime	1.5%	9 gal (35 litres)


<u>Semperfresh™</u>


6. Fruit pulp temperature and pitting susceptibility

- The lower the pulp temperature, the more susceptible to pitting.
 - Lapins
 - Sweetheart

Box filling and pitting

- Fruit pulp temperature at <u>box filling</u>
 = 32-35°F, therefore, extremely
 sensitive to pitting.
- Reducing the drop height or cushion the drop reduced pitting incidence.

Take home messages

- Heat/moisture stresses can cause 'Skeena' pitting on the trees.
- Pre-harvest GA₃ at a single low rate and Ca²⁺ multiple applications at low rate enhance fruit firmness and reduce pitting susceptibility.
- More mature, softer fruit and more susceptible to pitting
 - The optimum harvest maturity: 'Sweetheart' at 4.5; 'Lapins' at 5.5
- Heavy crop load reduces fruit firmness and increases pitting.
- Tissue Ca content is related to pitting resistance.
 - Sweet cherry fruit uptake Ca²⁺ at low temperature fast.
 - Adding OptiCALTM at 0.2-0.5% in hydro-cooling water for 5min increases fruit Ca²⁺ content and pitting resistance.
 - Higher rates at 1.0-2.0% damage pedicel quality.
- Semperfresh[™] reduce pitting at 0.5%, but increase pitting at higher rate.
- > The lower the fruit pulp temperature, the higher susceptibility to pitting.
 - Box filling during on-line packing generates significant pitting.
 - Reducing drop height or cushion the drop during box filling reduce pitting.

Thank you for your attention and research support!

